Proposition of a Theoretical Model for Missing Data Imputation using Deep Learning and Evolutionary Algorithms
نویسندگان
چکیده
In the last couple of decades, there has been major advancements in the domain of missing data imputation. The techniques in the domain include amongst others: Expectation Maximization, Neural Networks with Evolutionary Algorithms or optimization techniques and K-Nearest Neighbor approaches to solve the problem. The presence of missing data entries in databases render the tasks of decision-making and data analysis nontrivial. As a result this area has attracted a lot of research interest with the aim being to yield accurate and time efficient and sensitive missing data imputation techniques especially when time sensitive applications are concerned like power plants and winding processes. In this article, considering arbitrary and monotone missing data patterns, we hypothesize that the use of deep neural networks built using autoencoders and denoising autoencoders in conjunction with genetic algorithms, swarm intelligence and maximum likelihood estimator methods as novel data imputation techniques will lead to better imputed values than existing techniques. Also considered are the missing at random, missing completely at random and missing not at random missing data mechanisms. We also intend to use fuzzy logic in tandem with deep neural networks to perform the missing data imputation tasks, as well as different building blocks for the deep neural networks like Stacked Restricted Boltzmann Machines and Deep Belief Networks to test our hypothesis. The motivation behind this article is the need for missing data imputation techniques that lead to better imputed values than existing methods with higher accuracies and lower errors.
منابع مشابه
Missing data imputation in multivariable time series data
Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...
متن کاملچند رویکرد برخورد با مقادیر گمشده متغیرهای کمی و بررسی اثر آنها بر نتایج حاصل از یک کارآزمایی بالینی
Background and Objectives: A major challenge that affects the longitudinal studies is the problem of missing data. Missing in the data may result in the loss of part of the information which reduces the accuracy of the estimator and obtain the results will be biased and inaccurate. Therefore, it is necessary to evaluate the missing data mechanism from a longitudinal research and to consider thi...
متن کاملInfluence of Pattern of Missing Data on Performance of Imputation Methods: An Example from National Data on Drug Injection in Prisons
Background Policy makers need models to be able to detect groups at high risk of HIV infection. Incomplete records and dirty data are frequently seen in national data sets. Presence of missing data challenges the practice of model development. Several studies suggested that performance of imputation methods is acceptable when missing rate is moderate. One of the issues which was of less concern...
متن کاملPerformance evaluation of different estimation methods for missing rainfall data
There are numerous methods to estimate missing values of which some are used depending on the data type and regional climatic characteristics. In this research, part of the monthly precipitation data in Sarab synoptic station, east Azerbaijan province, Iran was randomly considered missing values. In order to study the effectiveness of various methods to estimate missing data, by seven classic s...
متن کاملThe machine learning process in applying spatial relations of residential plans based on samples and adjacency matrix
The current world is moving towards the development of hardware or software presence of artificial intelligence in all fields of human work, and architecture is no exception. Now this research seeks to present a theoretical and practical model of intuitive design intelligence that shows the problem of learning layout and spatial relationships to artificial intelligence algorithms; Therefore, th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1512.01362 شماره
صفحات -
تاریخ انتشار 2015